lineramber.blogg.se

Itranslate com
Itranslate com




itranslate com

The Equations af Canoniwl Trmsformation 368 Examples of CanonicaI Transformationf 375 The Harmonic Oscillator 277 'The Symplwtic Approach to Canonical Transformations 38 I Poisson Brackcts and Other Canonical Invariants 388 Equations of Motion, Infinitesimal Canonical Transformations, m n id Conse~vationTheorems in the Poisson Bracket Formulation 396 The Angular Momentum Poisson Bracket Relations 408 SymmetryGroupsofMechanicalSystemv 412 LiouviIle's Thectem 419 Legendre Transformations and the Hamilton 'Equations of Motion 334 Cyclic Coordinates and Conservation Theorems 343 Routh's Froceddre 347 The Hamiltonian Formu1a1ion of Relativistic Mechanics 349 Derivation of Hamilron's Equations frcrm a Variational Principle 353 The Principle of l e a s t Action 356ĩ E Canonical Transformations 9.1 9.2 9.3 The CIassicnl Mechanics of the Special Theory of RelativityĪngular Momentum and Kinetic Energy of Motion about a Poimt 184 Tensors 188 The Tnlrlertia Tensor and the Moment uf Inertia 191 The Eigenvalues of the lnertia Tensor ind the Principal Axis Transfornation 1 95 Solving Rigid Body Problems and the Euler Equations of Motion 19X Torquefree Motion nf a Rigid Body 200 The Heavy Symmetrical Top with One Point Fixed 208 Precession ofthe Equinoxes md of Satellite Orbits 223 Precession of Systems of Charges itl a Magnetic Field 230īasic Postulates of the SpeciJ Theory 277 Lorent2 Transfornations 280 Velocity Addition and Thomas Precession 282 Vectors and the Memic Tensor 286ġ-Formsand Tensors 289 Forces in the Special Theory Elec~omagnetim 297 Relativistic finematics of Collisions m d M a n y - P i c l e Systcms 300 7.8 Relativistic Angular Momentum 309 7.9 The Lagrangian F6rmuIation of Relatif~isticMechanics 3 12 7.1 0 &variant Lagrangi an Formulations 3 18 7.11 Lntroduction to the General Theory of Relativity 324

ITRANSLATE COM FREE

The Independent Comdinates of a Rigid Bod) 134 Orthogonal Transformations 139 Formal Properties of the Transfornation Matrix I 44 4.4 The Euler Angles 150 4.5 The Cayley-Klein Parameters and Related Quantities 154 Euler's Theorern on the Motion of a Rigid Body 155 4.6 4.7 Finite Rutittiom 161 4.8 Tnfinitesimal Ratations 1 8 4.9 Rate of Changr of a vector 17 1 1.10 The Corinlis Effect 174 4.1 4.2 4.3ĥ E The Rigid Body Equations of Motion 5,I 5.2 5,3 5,4 5.5 5.6įomuIation of the Problem 238 The Eigenvalue Equation and the Principal Axis Transformation 241 Frequencies of Free V~brati~n, and Normal Coordinates 250 Free Vibrations of a Linear Triatomic Molecule 253 Forced Vibrations and the Effect of Dissipative Forces 259 Bey orld Small Ostillations: The Damped Driven Pendulum and the Josephson Junction 265 I O Scattering in a Central Force Field 106 3.2 1 Transfornation of the Scattering Problem to Laboratory Coordinates 114 3,12 The ThreeB ody Problem 121 3,1

itranslate com

The Central Force Problem Reduction to the Equivalent One-Body Problem 70 3,2 The Equations of Motiun and First Integrals 72 3.3 The EquivaIeat One-Dimensional Problem, and Classification of Orbits 76 3.4 The Virial Theorem 83 3.5 The Differential Equdon for the Orbit, and Integrable Power-Law Potentials 86 3.6 Conditions -for Closed Orbits (Emand's Theorem) 89 3.7 The Kepler Problem: Tnverse-SquareLaw of Force 92 3.8 The Motion in Time in the Kepler Problem 98 3.9 The Laplace-Runge-Lenz Vector 102 3. Hamilton's Principle 34 Some Techniques of the Calcul~rsof Variations 36 Derivation of Lagrange's Equations from Hamilton 'l Priaciple: 44 Extension of Hamilton's Principle to Nonholanomic Systems 45 Advantages uf a Variational WncipIe Formulation 51 Conservation Theorems and Symmetry Properties 54 Ener_gyFunction and the Cansewation of Energy 60

itranslate com

Simple Applications of the Lagmgian Farm ulation 24Ĭonstraints 1: D' Alembert's Principle and Lagrange's Equations 16 Velocity-Dependent Patenrials and the Dissiparion Function 22Ģ H Variational Principles and Lagrange's Equations 2.1 2.2 2.3 2.4 2.5 Mechanics of a Particle I Mechanics of a S ystcm t)f Parlicles 5 H Survey of the Elementary Principles 1.1 1,2 1.3 1.4 1,5 San Francisco Boston New Yolk Capetown Hong Kong London Madrid Mexico City Monlreal Munich Paris Singapom Sydney ToQo Toronto San Franc~sco Boston New Ynrk Capetuwn Hmg Kong London Madrid Mexrco City Montreal hlunich Paris Singapme Sydney Tokyo TorontoĬharles Poole Urtive~~ity of South Carnliaa






Itranslate com